China's Experience in Implementing the UN 2030 Sustainable Development Agenda: A Case Study of Shenzhen

Shenzhen's exploration for a "low carbon & blue sky & high quality growth" pathway

Harbin Institute of Technology, Shenzhen Tang,Jie Jingjing Jiang Sept.19, 2019

á**le L**

Research objectives and main contents

On August 9, the CPC central committee and the state council issued the document on supporting Shenzhen to build a pilot demonstration zone of socialism with Chinese characteristics, which clearly requires Shenzhen to be a pioneer in sustainable development, to build comfortable and livable and ecological urbanization with clear water and blue sky, and provide Chinese experience for the implementation of the UN 2030 agenda for sustainable development.

In general speaking, we name a new strategy of the three targets to be reached at the same time: Carbon emissions peak, air standards & economic growth high quality.

Shenzhen obviously achieves the double goals of carbon emissions peak and air quality standards, because of carbon emission and environmental pollution as the typical homologous based on burning of fossil carbon emissions and harmful gas emissions. The dealing with climate change and environmental pollution control have the significant synergistic effect, measures the effect ratio of nearly 80%. The sustainable development policy promotes industrial upgrading, and vice versa, the up-industry is playing a key role reducing carbon emissions and control environmental pollution.

Catalogue

4

Background and Major Scientific Problems

Relationship Analysis Between Economy and Environment and Between GHG and Air Pollutant Emissions

Scenario Analysis of Emission Reduction Based on Synergic Governance and Green Upgrading

Technical Pathway and Policy Suggestion for Advancing Urban Sustainable Development

1.1 Research Background

Climate change • T

- The largest emitter of GHGs in the world
- The most vulnerable to climate change

Dual pressures to combat climate change and improve air quality

Features of GHGs and air pollutants from common sources and in the same atmosphere

Air pollution

- Air pollution as one of the most dangerous environmental issues
- Blue Sky Defense

Co-control of GHG and air pollutant emissions

1.1 Research Background

Environmental cost

Resource and environmental cost accounts for 3%-5% in GDP

Green GDP

Transforming and upgrading, from highquality development to environmental protection

Intensifying environmental regulation, from high-level protection to force highquality growth

Co-improvement of economic growth and environmental protection

Ecological civilization construction

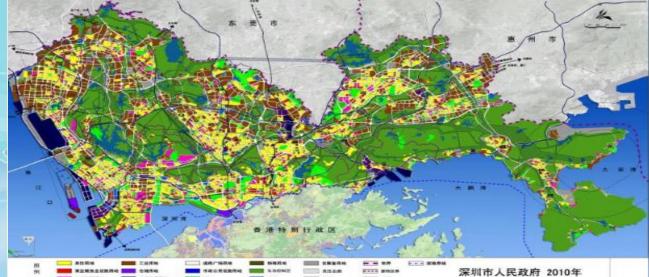
- Highlight the construction of ecological civilization
- Pursue sustainable development and modernization

1.1 Research Background

Shenzhen Energy intensity is about half of the national average value

Air quality ranks at the forefront of mid-large cities

Great environmental loadable pressure and bottleneck for further emission reduction and pollution prevention


2020

Reach a peak of GHG emissions Make the annual concentration of PM_{2.5} below 25ug/m³

深圳市城市总体规划(2010-2020) THE COMPREMENSIVE PLAN OF SHEEZHEN CITY (2010-2020)

建设用地布局规划图

1.2 Three Key Scientific Questions

(1) Coupling mechanism and unified accounting system for urban-scale GHG and air pollutant emissions

(2) Quantitative evaluation and optimization of alternative technologies for synergic emission reduction

(3) Integrated modeling of regional climate change and air quality as well as synergic governance across regions

1.3 Major research methods

(1) Econometric analysis and EKC analysis

(2) Emitting source and inventory analysis

(3) LEAP based simulation for GHG and air pollutant emissions, as well as for assessment of synergic emission reduction effect of alternative technologies

(4) SMOKE-WRF-CMAQ based platform for regional air quality simulation and forecast

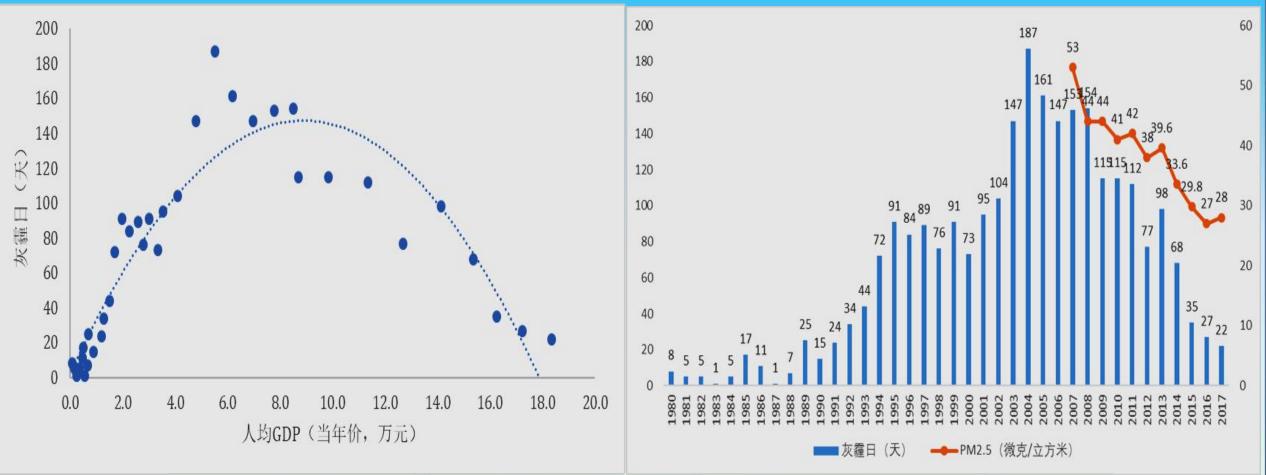
Catalogue

2

Relationship Analysis Between Economy and Environment and Between GHG and Air Pollutant Emissions

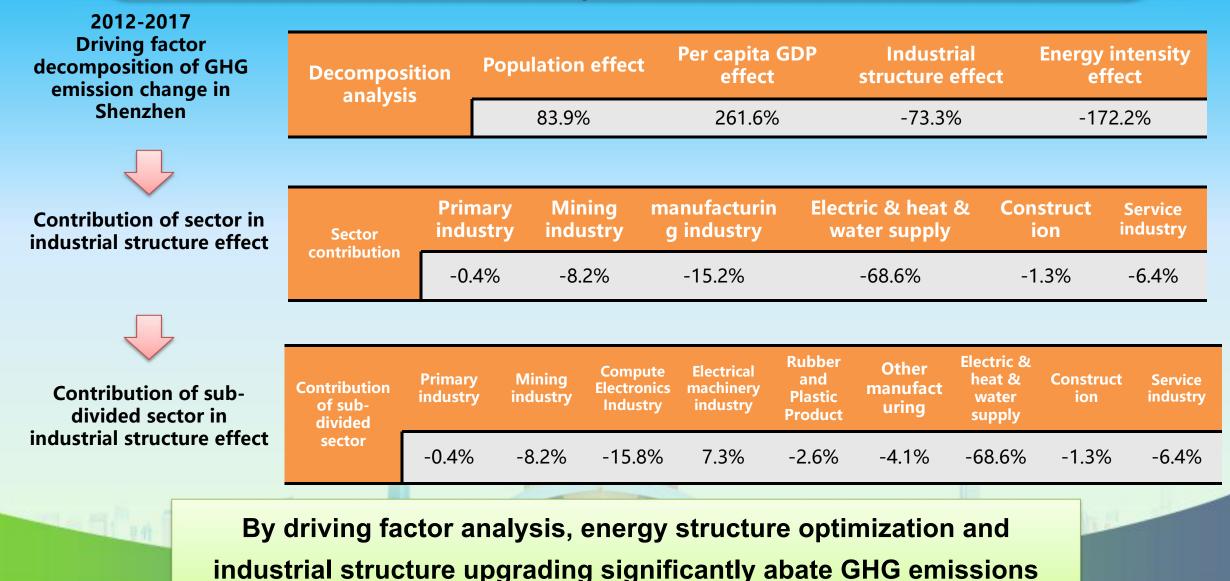
to the Call

2.1 Relationship analysis between economic growth and environmental quality


Economy: the annual growth of GDP between 8-10% while that of strategic emerging industries between 16-20% since 2010

Carbon intensity: far below the national average of China, with a decline rate of 5% annually

Industrial upgrading and high-quality growth positively promote carbon intensity decline


Per capital GDP V.S. the number of haze day yearly

Number of haze day yearly and annual concentration of PM_{2.5}

The industrial upgrading and green development strategy of Shenzhen have largely promoted urban air quality improvement

2.1 Relationship analysis between economic growth and environmental quality— based on LMDI model

2.1 Relationship analysis between economic growth and environmental quality— based on ETS

The impact of ETS on urban electricity structure	Share in electricity production	2013	2015	2017
	coal power	46.3%	42.4%	39.1%
The impact of ETS on carbon intensity of urban electric production	gas power	53.7%	57.6%	60.9%
	Carbon intensity Tonne /10⁴ KWh	2013	2017	Rate of decline
	coal power	8.98	8.75	2.5%
	gas power	4.74	4.32	8.9%
	sector	6.70	6.06	9.6%

The implementation of carbon emission regulation and ETS has built a forcing mechanism on energy structure optimization in Shenzhen.

During 2013-2017, in addition to carbon intensity decline, carbon emissions a half of million tonnes.

Catalogue

Scenario Analysis of Emission Reduction Based on Synergic Governance and Green Upgrading

the State Labor

3.1 Collection of alternative emission reduction technologies

Classification of sector from the perspective of synergic emission reduction		[Technologies/measures for GHG emission reduction			
			Sector	Category	lumber of specific technologies	
Critical sectors for synergic emission reduction	Electricity		Electricity	6	19	
	Road - passenger		Manufacturing	g 7	56	
	Road - freight		Transport	8	34	
	Water transport		Building	9	35	
	Manufacturing - electricity		In sum	30	144	
		[Technologies/measures for air pollution prevention			
	Manufacturing -boiler			Sector	Number of specific technologies	
Critical sectors for GHG emission reduction Critical sectors for air pollution prevention	Building			1		
			Ma	3		
				Road - passenger	12	
	Dust	a.	Transport	Road - freight	4	
	Others			Water transport	11	
			In sum		31	

3.2 Scenario setting for simulation

Comparison between two scenarios

(1) Reference scenarios

(2) Synergic scenarios

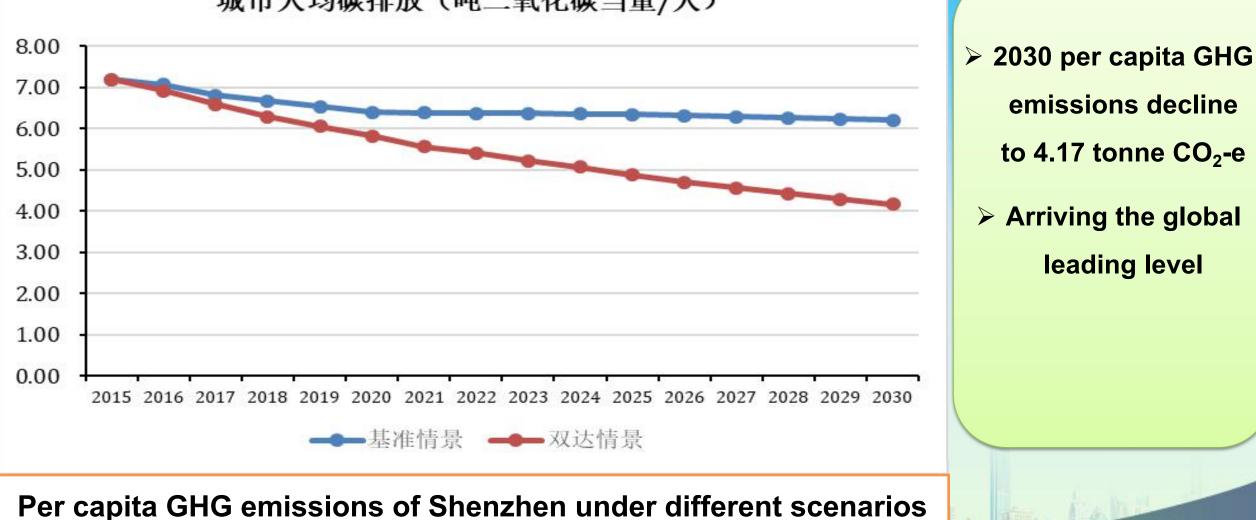
3.3 2020 Scenario analysis

	2020 synergio 2015 base		2020 synergic scenario VS 2020 reference scenario		
	Change of GHG emissions (Thousand t)	Share of contribution	Emission reduction (Thousand t)	Share of contribution	
Manufacturing	830	19.1%	2060	23.8%	
Building	2170	50.0%	2680	31.0%	
Transport	2030	46.9%	3580	41.4%	
Others	-690	-16.0%	320	3.7%	
In total	4330		8650		

(1) During 2016-2020, Building is the largest source of GHG emission growth.

(2) Transport, building and manufacturing are top sectors for emission reduction.

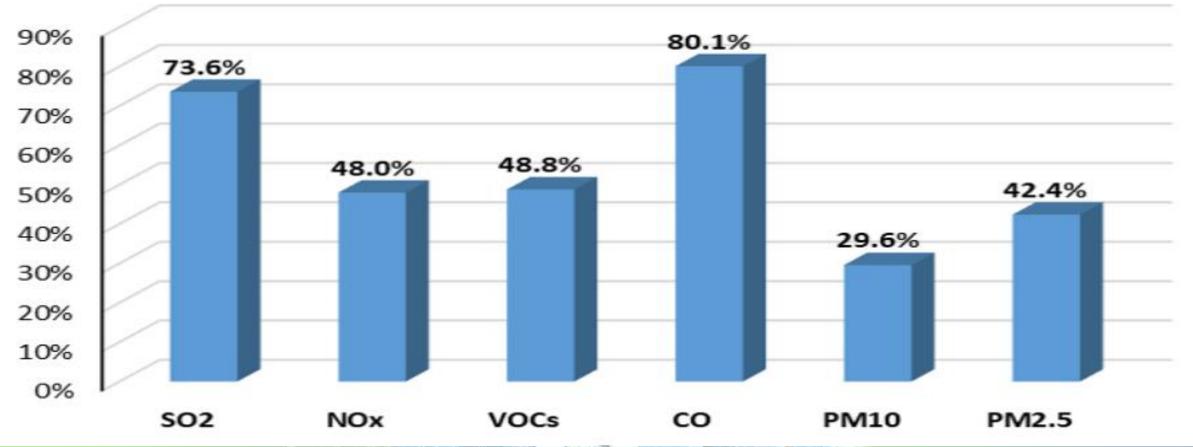
3.3 2020 Scenario analysis



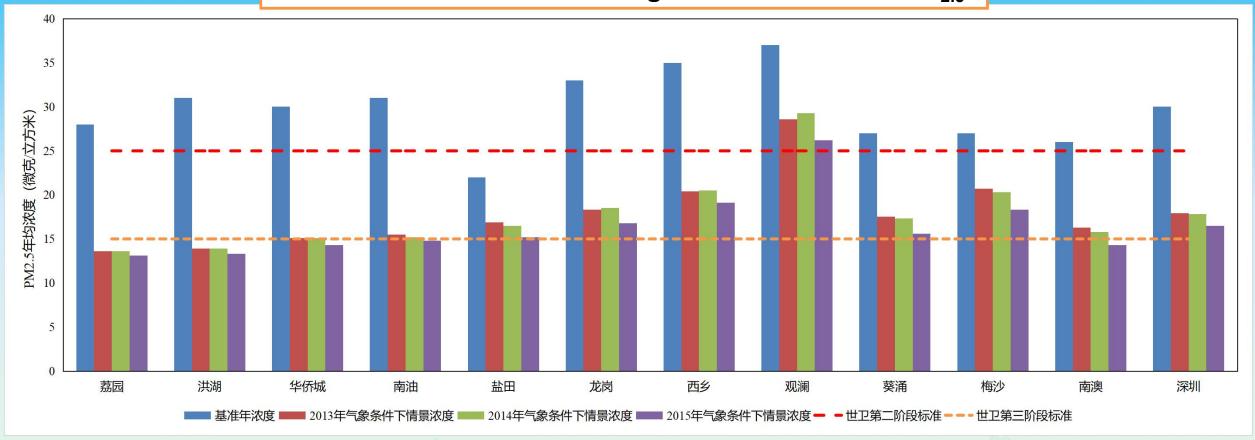
Relative to 2015, the amount of major air pollutant emissions has largely reduced by synergic emission reduction.

SO₂, NOx, VOCs, PM₁₀
PM_{2.5} will respectively
decrease 37.3%, 23.5,
32.0%, 26.9% and 35.0%

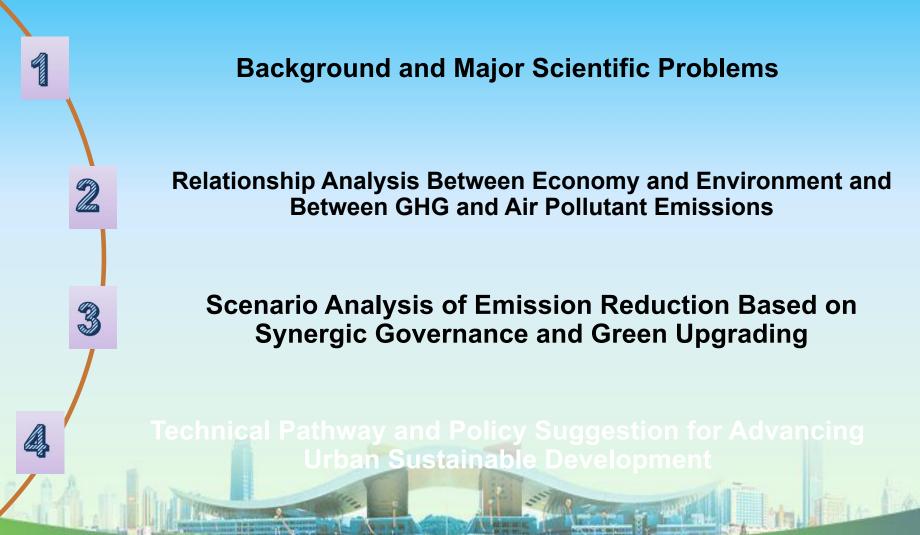
The comparison of major air pollutant emissions between 2015 and 2020


3.4 2030 Scenario analysis

城市人均碳排放(吨二氧化碳当量/人)


3.4 2030 Scenario analysis

2030 emission reduction of major air pollutants compared with 2015


3.4 2030 Scenario analysis

2030 Shenzhen annual average concentration of PM_{2.5}

- Under different meteorological conditions, 2030 annual average concentration of PM_{2.5} in Shenzhen is all below 18 ug/m³ but cannot meet the 3th standard of WHO (15 ug/m³).
- To realize the 3th standard of WHO, Shenzhen must strengthen its cooperation with surrounding areas on synergic governance.

Catalogue

A DESCRIPTION OF THE PARTY OF T

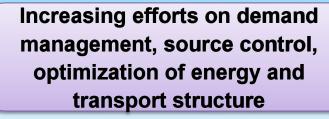
4.1 Proposed technologies for synergic emission reduction

(1) Nearly all 144 technologies for GHG emission reduction show significant synergic effects on cutting air pollutant emissions and improving air quality

(2) The synergic effects of 31 technologies for air pollution prevention are positive but not as significant as low-carbon technologies

(3) Technologies/measures on demand management, efficiency Improvement, energy and transport structural adjustment show significant synergic effect on GHG and air pollutant emission reduction

End-of-pipe control technologies for air pollution usually do not have significant synergic effects on GHG emission reduction, or even, they may increase GHG emissions by increasing energy consumption


4.2 Major policy proposals

Significant synergic effect between GHG and air pollutant emissions

Strengthening the synergic governance of multiple pollutants to reduce the overall costs

High synergic effect from demand management and structural adjustment measures

Extremely high initial investment, requiring 760 billion RMB

Urgent needs of green finance and market-based investment and financing mechanisms

Cross-regional synergic governance has great impact on Shenzhen GHG emissions and air quality but not yet well develop Urgent needs of institutional and mechanism innovation and data sharing to enhance regional environmental collaboration

your suggestions!